Non-AUG translation initiation of a fungal RING finger repressor involved in photocarotenogenesis.

نویسندگان

  • Laura Murcia-Flores
  • Juan M Lorca-Pascual
  • Victoriano Garre
  • Santiago Torres-Martínez
  • Rosa M Ruiz-Vázquez
چکیده

The RING finger protein CrgA acts as a negative regulator of light-induced carotene biosynthesis in the fungus Mucor circinelloides. Sequence analysis of the crgA coding region upstream of the first AUG codon revealed the existence of an additional non-canonical RING finger domain at the most N-terminal end of the protein. The newly identified RING finger domain is required for CrgA to regulate photocarotenogenesis, as deduced from site-directed mutagenesis experiments. The role of both RING finger domains in the stability of CrgA has been investigated in a yeast system. Wild type CrgA, but not the RING finger deleted forms, is highly unstable and is stabilized by inhibition of the proteasome function, which suggests that native CrgA is degraded by the proteasome and that active RING finger domains are required for proteasome-mediated CrgA degradation. To identify the translation start of CrgA, a mutational analysis of putative initiation codons in the 5' region of the crgA gene was accomplished. We demonstrated that a GUG codon located upstream of the first AUG is the sole initiator of CrgA translation. To our knowledge, this is the first report of a naturally occurring non-AUG start codon for a RING finger regulatory protein. A combination of suboptimal translation initiation and proteasome degradation may help to maintain the low cellular levels of CrgA observed in wild type cells, which is probably required for accurate regulation of photocarotenogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in Caenorhabditis elegans eIF2beta permit translation initiation from non-AUG start codons.

Recognition of the AUG start codon on mRNAs during translation initiation in eukaryotes occurs in a preinitiation complex that includes small ribosomal subunits and multiple translation initiation factors. The complexity of this process and the lack of appropriate tools have prevented its genetic study in multicellular organisms. Here we describe a genetic system in the nematode Caenorhabditis ...

متن کامل

Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons

The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and ...

متن کامل

Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation.

The bacteriophage T4 regA protein is a translational repressor of a subset of phage mRNAs. We show here that purified regA protein binds specifically to target mRNAs near the initiating AUG and occludes binding of ribosomes. Translational repression by regA protein diminishes expression of many genes whose mRNA sequences around the initiating AUG codons are different. A comparison of nucleotide...

متن کامل

Noncanonical translation initiation of the Arabidopsis flowering time and alternative polyadenylation regulator FCA.

The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for...

متن کامل

The role of eIF1 in translation initiation codon selection in Caenorhabditis elegans.

The selection of a proper AUG start codon requires the base-pairing interactions between the codon on the mRNA and the anticodon of the initiator tRNA. This selection process occurs in a pre-initiation complex that includes multiple translation initiation factors and the small ribosomal subunit. To study how these initiation factors are involved in start codon recognition in multicellular organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 21  شماره 

صفحات  -

تاریخ انتشار 2007